
CMS RATFOR SYSTEM MANUAL.(U)
U 79 S M CHOQUETTE, R J ORGASS AFOSR-79-O021

NCLASSIFIED VPI/SU-TM-79- AFOSR -TR-80-0277 NI

MEhLlllllElIIIIIIII
IIIIIIIIIIIIII
IIIIIIIIIIIIIl
IIIIIIIIIIIIIl

liiiI .0 Emilliii-.. :: 32

111114 11121.8
111111.25 U I4 1 1. 6

&WJROCOPY RESOLUTION TEST CHART
NAINO HUIFFFAl ill 1 ANA)

9=-33.1 . 8 0 0 27 7-AI

EXTENSION DIVISION

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE P. Box 17186
GRADUATE PROGRAM IN NORTHERN VIRGINIA FAtheqsow, AC 20041

(703) 471-4600

CMS RATFOR SYSTEM MANUAL*t

Stephen M. Choquette
and

Richard J. Orgass DTIO
Technical Memorandum No. 7 9- 4

MAY 16 1980
July 1, 1979

ABSTRACT A
RATFOR is a preprocessor for Fortran that provides modern

control structures and a substantial improvement in the syntax
< of Fortran programs. The output of RATFOR is a Fortran program

that is compiled by the Fortran processors and then executed.

The RATFOR preprocessor provides statement grouping, IF-ELSE
structures and four loops: DO, FOR, WHILE and REPEAT-UNTIL.

RATFOR source text is free format with multiple statements
on a line. Upper and lower case letters are treated as upper
case letters except in character constants. There is an include
facility so that large programs can be constructed out of a mul-
titude of small files without using the system editor. RATFOR
accepts files consisting of fixed length 80 column records with
imbedded tabs.

The program described here is an adaptation of the original
RATFOR processor written at Bell Laboratories for use in the CMS
environment.

This manual provides a detailed description of the processor

and is intended for readers who wish ta modify the processor.
The user's manual is Technical Xeiff6randum No. 79-5."

* Research sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command, under Grant No. AFOSR-
79-0021. The United States Government is authorized to re-
produce and distribute reprints for Governmental purposes
notwithstanding any copyright notation hereon.

t The information in this document is subject to change without
__ notice. The authors, Virginia Polytechnic Institute and

State University, the Commonwealth of Virginia and the United
States Government assume no responsibility for errors that
may be present in this document or in the program described
here. tp ,ed4for publio reioa.I

Loa. dtltrlbullom =limited,
~ - Located at Dulles Inteniational Aifport-400 West Service Road

f

Copyright, 1979

by

Stephen M. Choquette

and

Richard J. Orgass

General permission to republish, but not for profit, all or part
of this report is granted, provided that the copyright notice is
given and that reference is made to the publication (Technical
Memorandum No. 79-4, Department of Computer Science, Graduate
Program in Northern Virginia, Virginia Polytechnic Institute and
State University), to its date of issue and to the fact that re-
printing privileges were granted by the authors.

I "moor

N W -= "-

SECURITY CLA IFICATION OF T PS PAGE (When Date Entered)

PORT DOCUMENTATION PAGE READ INSTRUCTIONS
DOCUENTAIONBEFORE COMPLETING FORM

I R, ..-- -2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

, (and S S. TYPE OF REPORT & PERIOD COVERED

. RATFOR SYSTEM MANUAL *Interim jr

AUTHO(&)S. CONTRACT OR GRANT NUMBER(&)

Stephen M./Choquette
Richard J.10rgass OSR-79-$%21•

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TAS

Virginia Polytechnic Inst. & State University AREA & WORK UNIT NUMBER

Department of Computer Science17A
Washington, DC 20041 (

11. CONTROLLING OFFICE NAME AND ADDRESS,, .. j- Jur ww-9
Air Force Office of Scientific Research/NM / j PuGES
Bolling AFB, Washington, DC 20332 . UMBEROFPAGES

468

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

15a. DECL ASSI FIC ATI ON/DOWN OR DIN G
17T SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reerse side If necessary and Identify by block number)

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

RATFOR is a prepuicessor for Fortran that provides modern control structures
and a substantial improvement in the syntax of Fortran programs. The output
of RATFOR is a Fortran program that is compiled by the Fortran processors and
then executed.

The RATFOR preprocessor provides statement grouping, IF-ELSE structures and

four loops: DO, FOR, WHILE and REPEAT-UNTIL. (OVER)

DD , 1473 EDITION OF INOV 6 IS OBSOLET UNCLASSIFIED

-7Z 1 731L-. SEURITY CLASSIFICATION Of THIS PAGE (*%en Date nt""

L I II I III II II --- -

SECURITY CLASSIFICATION Of THir PAGE(IWhe Data Enteted)

20. Abstract cont.

RATFOR source text is free format with multiple statements on a line. Upper
and lower case letters are treated as upper case letters except in character
constants. There is an include facility so that large programs can be con-
structed out of a multitude of small files without using the system editor.
RATFOR accepts files consisting of fixed length 80 column records with imbedd-
ed tabs.

The program described here is an adaption of theoriginal RATFOR processor
written at Bell Laboratories for use in the CMS environment.

This manual provides a detailed description of the processor and is intended
for readers who wish to modify the processor.

UNCLASSIFIED

SECURITY CLASSIICATION OF T-1- PAG(Wehn Date Entere)

RATFOR System Manual

* TALE OFCONTETS (-'

RATFOR Language Description

Suimmary of RATFOR Features------------------------------- 1

Description of RATFOR------------------------------------ 2

Quick Reference Guide to RATFOR------------------------- 9

RATFOR Reference--- 12

Structure of the RATFOR Preprocessor------------------------- 13

RATFOR Preprocessor Programs--------------------------------- 15

Global Tables, Pointers, Variables & Switches----------------- 17

Organization of Preprocessor Tables-------------------------- 19IRATFOR Input/Output Files------------------------------------ 21
RATFOR Error Messages--- 22

Explanation of Preprocessor DEFINEs-------------------------- 28

Expanded Program Descriptions-------------------------------- 30

3i;

A. D. *

2IechnialmO~ie

Summary of RATFOR Features

With the growing concern for the cost of program development,
the computer industry has seen a shift towards programming lan-
guages that emphasize an organized approach to program develop-
ment. RATFOR is a new, rational approach to programming in FOR-
TRAN; the language offers RATFOR users the universality and
efficiency of FORTRAN, while providing decent program flow con-
trol structures. RATFOR, implemented as a preprocessor to FOR-
TRAN, offers the busy programmer statement grouping, IF-ELSE seg-
menting, and DO, FOR, WHILE, and REPEAT-UNTIL loops. Additional
RATFOR features and keywords make code maintenance a less painful
task.

This paper is the System Manual for the RATFOR preprocessor
on the IBM CMS timesharing system. Included in this paper is a
language description of RATPOR, an explanation of the preproces-
sor programs and tables, and a detailed explanation of the RATFOR
error messages. Within the language description section is a
quick reference guide listing the keyword syntax and RATFOR cos-
metic features.

€-1-

Description of RATFOR

RATFOR is an attempt to hide the worst of FORTRAN's deficien-
cies (primarily hard to understand code), while retaining the
advantages of the language (universality, portability, effici-
ency). RATFOR offers the user powerful program flow control
statements without the FORTRAN necessities of GOTOs and labeled
statements. Additionally, the RATFOR language provides the user
with many "pretty print" features so that a program in RATFOR
would be easier to understand and maintain.

The remainder of the Language Description section will
explain both the syntactic and cosmetic features of RATFOR. The
program flow control structures are typical of the newer high
level programming languages. For a quick reference to RATFOR,
flip to the Quick Reference Guide at the end of the Language Des-
cription section.

Statement Grouping

Often a programmer will want to group a sequence of state-
ments together for execution on a certain condition. Generally,
the programmer needs something to say "if some condition, do
these things." In RATFOR, statements can be grouped by enclosing
them within brackets. For example,

IF (A >- 100)
(C-C +1

SUM = SUM + A}L=0

The example above is a legal RATFOR program segment. Note that
the brackets denote a sequence of statements to execute when A >-
100. The brackets perform the same function as the PL/l DO/END
sequence or the PASCAL BEGIN/END sequence.

To the avid FORTRAN programmer, a few things will stand out
in the above example. First, RATFOR allows free form input;
statements can occur in any column. When RATFOR encounters a
statement starting with an all-numeric field, the processor
assumes the field is a FORTRAN label and places it in columns 1-5
of the output. Next, the FORTRAN user will observe that '>-' is
not a legal FORTRAN boolean relational operator. RATFOR will
translate the more understandable relational operators
(>,>-,-,<,<,,=,&,I) into their FORTRAN equivalent. The last
ibservation the FORTRAN user will make is the semicolon. Being a
ree form language, RATFOR allows more than one statement per
line. The additional statements must be separated by a semico-
lon. When only one statement is on a line, the semicolon is
optional. Thus, the previous example could be written as:

-2-

LA___

IF(A>-I100) {C-C+l;SUM-SUM+A;L0O;}

Obviously the first form is easier to understand. One final com-
ment is needed; when a statement is obviously not finished on
one line, RATFOR assumes it will be continued on the next line.
No character is needed in column 6.

ELSE Clauses

Occassionally the FORTRAN programmer will want to say "if
some condition, do these things, otherwise do these." The ELSE
clause provides this option. Naturally the ELSE clause may be
left off. The full format of the IF statement is

IF (legal FORTRAN condition)
RATFOR statement

ELSE
RATFOR statement

The RATFOR statement can be in one of three forms: 1) a single
FORTRAN statement (no brackets needed), 2) a bracketed segment of
RATFOR and FORTRAN statements, or 3) another RATFOR keyword.

Notice that the third case allows us the option of nested
IFs. A legal sequence of RATFOR statements is

IF (A == B)
CTRl=CTRl+1

ELSE IF (A>B)
CTR2-CTR2+1

ELSE
CTR3-CTR3+1

Like many languages allowing the IF-ELSE construct, the ques-
tion arises of which IF does the ELSE match with. This ambiguity
is resolved by matching the ELSE with the last unmatched IF.
Because RATFOR allows free form input, the user should use inden-
tation to clarify the program listing.

The DO Statement

The RATFOR DO statement is very similar to the FORTRAN DO
statement. The major omission is the lack of a statement number.
The format of the RATFOR DO statement is

DO legal-FORTRAN-DO-test
RATFOR statement

As before, the RATFOR statement can be a single statement or a
sequence of RATFOR statements in brackets. Since the RATFOR
statement can be another RATFOR statement, the following sequence
is legal.

-3-

IF (A -- B)
DO 1=1,5

IF (SWITCH(i) == 1)
CTRIlCTR1+1

ELSE
CTR2=CTR2+l

Notice that in each case, a single RATFOR statement follows the
IF and DO statements. Occassionally brackets will help clarify
the listing, although they are not necessary.

The BREAK Keyword

The BREAK keyword provides a way of exiting a loop without
using the FORTRAN GOTO statement. BREAK can be followed by an
integer (BREAK N) specifying how many levels of looping to exit
from. The following sequence locates the first non-blank charac-
ter in a string array

DO 1=1,80
IF (STRING(I) -- BLANK)

BREAK

BREAK jumps to the statement after the end of the specified loop.

The NEXT Keyword

Like BREAK, the NEXT keyword provides a means of loop control
without the GOTO statement. NEXT jumps to the iteration step of
the specified loop. NEXT can also be followed by an integer
(NEXT N) giving the loop level to go to

DO I=1,80
{ IF (STR(I)==BLANK)

NEXT
STR (I) -STAR}

This sequence of code sets all non-blank characters in a string
array to '*'. STAR is assumed defined above.

The WHILE Statement

WHILE provides a more powerful looping structure than the
simple DO loop. The syntax of the WHILE statement is

WHILE (legal FORTRAN condition)
RATFOR statement

-4-

Notice that the WHILE loop checks the FORTRAN condition at the
start of the loop so that the loop may be executed zero times.
The sequence

1-80
WHILE (STR(I) --BLANK)

II+l

locates the last non-blank character in an input line of 80 char-
acters. Of course the NEXT and BREAK statements can occur within
a WHILE loop. The NEXT statement in a WHILE loop goes to the
test condition.

The FOR Statement

The FOR statement is yet another powerful RATFOR loop struc-
ture. The syntax of the FOR statement is

FOR (initial; condition; increment)
RATFOR statement

where initial is any one FORTRAN statement, condition is the
stopping condition and increment is the final step (a single
statement) in the loop. Any of the fields can be null so long as
the semicolon delimiter is present. Our last non-blank character
example above is

FOR (Is80; STR(I)~-BLANK; I-I-1)

Notice that the actual loop portion is the null statement. This
is because everything we will want to do is in the FOR statement.
As may be obvious by now, certain loop constructs work better in
different situations. Choose the best and simplest for your
work. The NEXT statement in a FOR loop goes to the increment
step of the loop.

The REPEAT-UNTIL Statement

The REPEAT-UNTIL construct is the last loop control structure
in RATFOR. It provides a means of checking the exit condition at
the bottom of the loop. Recall that WHILE and FOR check at the
top of loops. The syntax of the statement is

REPEAT
RATFOR statement

UNTIL (legal FORTRAN condition)

The UNTIL is optional and, if omitted, provides an infinite loop.
Of course the programmer will want to get out of the loop using
BREAK, STOP, or RETURN. Caution should be used with the REPEAT-

-5-

UNTIL construct as it does not test for the null case.

The RETURN Statement

The standard FORTRAN RETURN mechanism uses the function name
to return a value. This is allowable in RATFOR as well as
expressions of the form

RETURN (value)

If there are no parentheses, a normal RETURN is made.

The DEFINE Statement

The DEFINE statement is not an executed RATFOR statement; no
FORTRAN code is generated. The statement allows the user to
create program definitions to make his program more understanda-
ble. The syntax is

DEFINE (name, definition)
or

DEFINE name, definition

Every occurrence of name in the user source code is immediately
replaced by the definition. Optimally, DEFINEs should be at the
start of the source code to clarify their use. The name portion
can be arbitrarily long and must start with a letter. The DEFINE
statement can be used to define global constants as follows

DEFINE (YES,l)

DEFINE (NO,0)

With the above statements, we can now say

IF (ISMTQ == 1)
RETURN (YES)

ELSE
RETURN (NO)

The INCLUDE Statement

The INCLUDE statement inserts files directly in the RATFOR
source code input. The statement

INCLUDE RATCMN

inserts the CMS file RATCMN (possibly containing COMMON blocks)
into the user source code in place of the INCLUDE statement.
Thus, the programmer would type the program COMMON blocks once
into the RATCMN file and then, in each subroutine needing the

-6-

COMMON blocks, insert "INCLUDE RATCMN." Of course changes to the
RATCMN file would affect every subroutine having the INCLUDE
statement. The syntax of the statement is

INCLUDE FN FT FM

Where FN is the CMS file name (8 characters maximum), FT the CMS
file type (optional - Default RATFOR), and FM the CMS file mode
(optional - Default Al).

RATFOR Cosmetic Features

As mentioned before, RATFOR provides many cosmetic features
to allow the user a sharp looking listing. In addition to a
sharper listing, the use of cosmetics makes the source listing
more readable and easier to maintain.

First, RATFOR allows free format input. Statements can occur
anywhere on a line. If more than one statement is on a line,
they must be separated by a semicolon. Blank lines are ignored.
The user need not worry about a long statement continuing to a
new line; RATFOR can make a fair estimate whether the statement
is a continuation. Lines ending with any of the characters

= + - * , I & (

are assumed to be continued on the .,ext line.

The next cosmetic feature is RATFOR commenting. Comments
start with a # and can occur anywhere in a line. Thus, comments
can occur next to source statements. Comments are assumed to
continue until the end of the line.

RATFOR will perform translation services for the user whe-
never they are needed, except within single or double quotes:

== to .eq. to .ne.
> to .gt. >= to .ge.
< to .1t. <- to .le.
& to .and. I to .or.

to .not. to .not.

Additionally, the statement grouping brackets can be either { and
1, 1 and 1, or $(and $).

One important cosmetic feature is that RATFOR input can be in
upper and lower case. Anything not within single or double
quotes is translated to upper case for the CMS FORTRAN compiler.

-7-

Lastly, text within matching single or double quotes is
converted to its Hollerith equivalent ('string'-6Hstring).
Within quoted strings, the backslash '\' serves as an escape
character; the next character is taken literally. This way a
single quote can be entered as

-8-

Quick Reference Guide to RATFOR

(Keyword Syntax)

BREAK Keyword

BREAK N (N-i by default)

Exits from N levels of enclosing loops.

DEFINE Statement

DEFINE (defined name, defined value)
or

DEFINE defined name, defined value

Defined name may be arbitrarily long and must start with
a letter.

DO Statement

DO legal-FORTRAN-DO-test
RATFOR statement

FOR Statement

FOR (initial; condition; increment)
RATFOR statement

Initial - any single FORTRAN statement
Condition - any legal RATFOR condition
Increment - any single FORTRAN statement

IF Statement

IF (legal FORTRAN condition)
RATFOR statement

ELSE
RATFOR statement

-9-

The ELSE is optional and is mat'hed with the last IF.

INCLUDE Statement

INCLUDE FN FT FM

FN - CMS file name (8 characters maximum)
FT - CMS file type (Optional - Default RATFOR)
FM - CMS file mode (Optional - Default Al)

NEXT

NEXT N (N-1 by default)

Branches to next iteration of Nth loop.

REPEAT-UNTIL Statement

REPEAT
RATFOR statement

UNTIL (legal FORTRAN condition)

RETURN

RETURN (expression)

WHILE Statement

WHILE (legal FORTRAN condition)
RATFOR statement

* A RATFOR statement can be any of the following:
1. A single FORTRAN statement
2. A bracketed set of statements
3. Any of the RATFOR statements just described

-10-

Quick Reference Guide to RATFOR

(Cosmetics)

* Free form input (ie. spacing is not important).

* Lines ending with - + - * , / I & (are assumed to be
continued. No continuation signal is needed.

* Statements be.inining with an all-numeric field is assumed to
be a FORTRAN label and is placed in columns 1-5 of the output.

* Strings in matching single or double quotes are converted to

Hollerith form ('string'-6Hstring).

* Statement grouping using either { and }, [and], or $(and $).

* Comments beginning anywhere in the input, denoted by #.

* Translation services
=M to .eq. "= to .ne.
> to .gt. >- to .ge.
< to .It. <= to .le.
& to .and. I to .or.

to .not.

-11-

RATFOR Reference

Kernighan, Brian W. "RATFOR - A Preprocessor for a Rational FOR-
TRAN,* Bell Laboratories Technical Report 55, January 1, 1977.

-12-

Structure of the RATFOR Preprocessor

The RATFOR preprocessor is organized along lines that will
make it easy to maintain and to add new features. The two domi-
nant pcocedures are LEX and PARSE. LEX translates RATFOR key-
words into an internal numeric type. The internal type is
expressed in terms of a defined name so that, to modify the type,
only one change to the DEFINE statement has to be performed.
PARSE takes the internal types assigned by LEX, and calls an
appropriate subroutine to parse the RATFOR keyword. For each
looping keyword (DO, REPEAT, UNTIL, WHILE, FOR) there are two
subroutines; the first generates FORTRAN code for the top of the
loop and the second handles code generation for the end of the
loop. In addition to the keyword parsing subroutines, there are
various internal functions to perform tasks like determining the
length of a string.

Since FORTRAN does not handle character strings easily, the
preprocessor has been written to make string handling as painless
as possible. Character strings are set up as one character per
array element. The defined symbol EOS marks the end of a string.

To make life easier, the preprocessor has been written in
RATFOR. The original version was bootstrapped up through FOR-
TRAN. Although the FORTRAN representation of the preprocessor
exists, it is not the place for changes to the preprocessor. All
changes should be made to the RATFOR source code and a new ver-
sion should be processed through the old code. Having the source
code in RATFOR simplifies code maintenance because all of the
nice features of the language were used.

Extensive use is made of the RATFOR DEFINE statement in the
preprocessor. The DEFINE statement allows users to set up their
own definitions. As an example, the user may have "DEFINE
(BIGA,32)" in the source code. The result of this is that, when
the preprocessor sees BIGA in the user source code, it is immedi-
ately replaced with the number 32. In this manner, the code is
much more machine independent and is easier to maintain. All
user definitions are stored in a large definition table, TABLE,
which stores both the user name and the defined value.

-13-

Structure of the RATFOR Preprocessor
(Continued)

To simplify code maintenance, all COMMON blocks are located
in the CMS file, RATCMN RATFOR. When a procedure needs the COM-
MON blocks, the command *INCLUDE RATCMN" is inserted in the
source code. Modification to a COMMON block can now be done once
in RATCMN instead of in each procedure using the COMMON block.

The last important structural feature to note is how the pre-
processor handles input characters. On CMS, all FORTRAN state-
ments must be in upper case. The RATFOR language allows upper
and lower case source code. To convert the FORTRAN statements,
the preprocessor maps all characters to upper case, excepting
those in character constants. Character constants are left in
their original case. The GETCH and INMAP functions handle char-
acter constants and mapping.

-14-

RATFOR Preprocessor Programs

ALLDIG - Identify whether string is numeric
BALPAR - Determine whether string has balanced parentheses
BRKNXT - Generate code for BREAK and NEXT statements
CONV - Convert string array from 1 character/entry to 4 characters/entj
CTOI - Return numeric representation of specified string
DEFTOK - Retrieve name part of DEFINE statement
DOCODE - Generate code for top of DO loop
DOSTAT - Generate terminating CONTINUE for DO statement
EATUP - Process remainder of input string. Handle continuations
ELSEIF - Generate code for ELSE segment of IF statement
EQUAL - Determine if two strings are equal
ERROR - Print error messages, terminate execution
EXIT - Return control to CMS editor
FORCOD - Generate code for top of FOR loop
FORS - Generate code for bottom of FOR loop
GETCH - Get next input character, map to proper case
GETDEF - Retrieve definition part of DEFINE statement
GETTOK - Process INCLUDE statement
GTOK - Strip comments and re-format input tokens
IFCODE - Generate labels for IF parsing
IFGO - Generate IF..NOT for IF statements
INDEX - Return location of character within a string
INITKW - Initialize the definition table, TABLE
INMAP - Map input characters to internal representation
INSTAL - Place user definitions in definition table, TABLE
INTCV - Convert integer to character string
LABELC - Check on label conflicts
LABGEN - Generate RATFOR labels for parsing loops
LENGTH - Return length of specified string
LEX - Lexically analyze tokens, returning lexical type
LOOKUP - Look up a name in the definition table and

return the user definition
NGETCH - Control input from CMS file and input buffer
OTHERC - Handle non-RATFOR statements
OUTCH - Add character to output buffer
OUTCON - Add labeled CONTINUE to output buffer
OUTDON - Fill output buffer through column 80
OUTGO - Add "GOTO N" to output buffer
OUTMAP - Map characters to external representation
OUTNUM - Add label to output buffer
OUTSTR - Place string in output buffer. Convert Holleriths
OUTTAB - Fill columns 1-6 with blanks
PARSE - Controls which code to generate

-15-

RATFOR Preprocessor Programs
(Continued)

PBSTR - Add string to the input buffer using PUTBAK
PUTBAK - Add individual character to input buffer
PUTCH - Write characters to CMS output buffer
PUTLIN - Transfer string to output buffer
RELATE - Translate RATFOR relational operators to FORTRAN

equivalent
REMARK - Write error message to CMS error file
REPCOD - Generate code for REPEAT statement
RETCOD - Generate code for RETURN statement
SCOPY - Copy one string to another
SYNERR - Print syntax error messages
SYSCAL - Execute CMS commands from executing program
TYPE - Determine whether character is numeric or alpha
UNSTAK - Control loop termination for all loops
UNTILS - Generate code for UNTIL statement
WHILEC - Generate code for top of WHILE loop
WHILES - Generate code for bottom of WHILE loop

-16-

nL ,A

Global Tables

EXTDIG(10) - External representation of digits 0-9
INTDIG(10) - Internal representation of digits 0-9

EXTLET(26) - External representation of lower case alphabet
INTLET(26) - Internal representation of lower case alphabet

EXTBIG(26) - External representation of upper case alphabet
INTBIG(26) - Internal representation of upper case alphabet

EXTCHR(36) - External representation of special characters
INTCHR(36) - Internal representation of special characters

SDO(3) - String "DO", followed by EOS
VDO(2) - Lexical representation of DO

SIF(3) - String "IF", followed by EOS
VIF(2) - Lexical representation of IF (LEXIF)

SELSE(5) - String "ELSE", followed by EOS
VELSE(2) - Lexical representation of ELSE (LEXELSE)

SWHILE(6) - String "WHILE", followed by EOS
VWHILE(2) - Lexical representation of WHILE (LEXWHILE)

SBREAK(6) - String "BREAK", followed by EOS
VBREAK(2) - Lexical representation of BREAK (LEXBREAK)

SNEXT(5) - String "NEXT", followed by EOS
VNEXT(2) - Lexical representation of NEXT (LEXNEXT)

SREPT(7) - String "REPEAT", followed by EOS
VREPT(2) - Lexical representation of REPEAT (LEXREPEAT)

SFOR(4) - String "FOR", followed by EOS
VFOR(2) - Lexical representation of FOR (LEXFOR)

SUNTIL(6) - String "UNTIL", followed by EOS
VUNTIL(2) - Lexical representation of UNTIL (LEXUNTIL)

SRET(7) - String "RETURN", followed by EOS
VRET(2) - Lexical representation of RETURN (LEXRETURN)

-17-

Global Tables (Cont.)

BUF(300) - Push back buffer - holds strings for later parsing

OUTBUF(81) - Holds output characters, printed when full

FCNAME(30) - Holds function name - will use with RETURN statement

FORSTK(200)- Holds increment clauses of FOR statement - to put at
the bottom of the loop.

Global Pointers and Variables

BP - Pointer to the next location in the pushback buffer,
OUTBUF.

FORDEP - Current depth (representing # unfinished loops) of
the FORSTK table.

LEVEL - Unit number currently being read from. Will vary with
INCLUDEs.

LINECT - Line count in the RATFOR input file - used for error
message printing.

OUTP - Next location in the output buffer, OUTBUF.

Global Switches

XFER - When xfer = YES, GOTO generation is suppressed. This
helps prevent the generation of two successive GOTOs,
the second of which is never executed because it is
unlabeled. Most of the major routines to parse the
IF/ELSE and loop control statements set xfer back to NO.

-18-

Organization of Preprocessor Tables

The only table of interest is the definition table, TABLE. This
table is organized as a modified linked list. Because an ordi-
nary linked list is too slow, there is a pointer table to speed
up processing of user definitions. The pointer table, TABPTR,
has one entry for each letter of the alphabet. The entry for a
letter will point to a linked list of definitions starting with
that letter. If no definitions have been processed for that let-
ter, the TABPTR entry will be zero. AVAIL points to the next
available location in TABLE.

The INSTAL routine places a name and user definition in TABLE
while LOOKUP retrieves the user definition from the table.

Within each linked list, EOS marks the end of a definition and a
name EOL signals the end of a list. If EOL is reached before the
name is found (in LOOKUP), the name is not in the definition
table.

Important Points

1. The pointer to the next entry in TABLE occurs at the start of
the record. Thus, in the example below, AARDVARK is the last
entry starting with 'A'.

2. The entries in TABLE are NOT in sorted order. They are
placed in the definition table as they are encountered in the
source code.

3. There are 41 entries in the TABPTR table because in EBCDIC,
the character codes for the letters 'A' - 'Z' are inter-
spersed with unprintable characters. The TABPTR entries for
the unprintable characters are never used but cannot be omit-
ted because of how the character is converted into an array
subscript. The LOOKUP routine explains the conversion in
greater detail.

-19-

TABPTR TABLE

'' II I IEI IE lEt tEI IEIE I IEJ I Et
I IANGUS t01 5 IOIOIAARDVARK(lOI 7 IOIOIHORSE1013101

'B' 1 0 1 I 1 Is I IS ILl IS) ISMI Isl is I

'H' I I

-20-

RATFOR Input/Output Files

I Unit I Access I Accessed I
i File Name i No. I Mode I By i Description I

XXXX FORTRAN 1 Output PUTCH FORTRAN output file

SCRATCH THREE 6 Output REMARK Error file

XXXX RATFOR 7 Input GETCH User RATFOR source

XXXX is the file name given by the user

Unit numbers 2-5 have been reserved in case later RATFOR modifi-
cations require more input or output files. All unit numbers
generated by the GETTOK program to handle user INCLUDE statements
range from 8 to 99.

-21-

RATFOR Error Messages
Explanations and Corrections

"Si-Missing Left Paren."

Meaning: A left parenthesis was missing starting an IF,
WHILE, or UNTIL statement.

Correction: Check to ensure that all parentheses are
balanced

Produced By: BALPAR routine

"02-Missing Parenthesis in Condition."

Meaning: The parser encountered unbalanced parentheses
in an IF, WHILE or UNTIL conditional state-
ment.

Correction: Check to ensure that all parentheses are
balanced within the conditional.

Produced By: BALPAR routine

"03-Illegal BREAK."

Meaning: An attempt was made to either generate code
for the BREAK statement outside of a loop or
to transfer control outside of an illegal num-
ber of loops (N too high on "BREAK N").

Correction: Make sure the BREAK statement occurs within a
loop. Check the level of the BREAK with the
level of looping.

Produced By: BRKNXT routine

"04-Illegal NEXT."

Meaning: An attempt was made to either generate code
for the NEXT statement while not in a loop, or
to transfer control through too many levels of
looping (N too high on "NEXT N").

Correction: Make sure the NEXT statement occurs within a
loop. Check the level of the NEXT with the
level of looping.

Produced By: BRKNXT routine

-22-

RATFOR Error Messages
Explanations and Corrections

"05-Unexpected EOF."

Meaning: The parser was expecting more of the input
line when an end of file condition occurred.

Correction: Check for unfinished continuation lines.
Produced By: EATUP routine

"06-Unbalanced parentheses."

Meaning: The parser encountered unbalanced parentheses
in an IF, WHILE, or UNTIL statement.

Correction: Check to ensure that all parentheses are
balanced within the statement.

Produced By: EATUP routine

"07-Missing left paren in FOR statement."

Meaning: A left parenthesis was expected at the start
of the FOR statement.

Correction: Make sure all necessary parentheses are pre-
sent.

Produced By: FORCOD routine

"08-Unbalanced parentheses in FOR clause."

Meaning: Unbalanced parentheses were encountered while
parsing the FOR statement.

Correction: Check to see that the FOR statement has a
balanced number of parentheses.

Produced by: FORCOD routine

"09-FOR clause too long."

Meaning: The specified FOR clause was longer than the
maximum length (currently 200 characters).

Correction: Where possible, break the FOR clause into
smaller pieces.

Produced by: FORCOD routine

-23-

RATFOR Error Messages
Explanations and Corrections

"10-Non-Alphanumeric name in DEFINE."

Meaning: The name specified in the DEFINE statement had
a non-alphanumeric character in it.

Correction: Correct the DEFINE to be composed of numbers
and letters only.

Produced By: GETDEF routine

"11-Definition too long."

Meaning: The specified definition was longer than the
maximum definition size (currently 200 charac-
ters).

Correction: Choose a smaller definition.
Produced By: GETDEF routine

"12-Missing comma in DEFINE."

Meaning: The form of the DEFINE statement having par-
entheses also has a comma between the name and
definition.

Correction: Add the necessary comma.
Produced By: GETDEF routine

"13-Missing right paren in DEFINE."

Meaning: A definition starting with a left parenthesis
did not have a matching right parenthesis.

Correction: Add the necessary right parenthesis.
Produced By: GETDEF routine

"14-Unexpected token in DEFINE stmt."

Meaning: An unexpected token was found in the DEFINE
statement.

Correction: Correct the DEFINE statement according to the
rules specified in the language description.

Produced By: GETDEF routine

-24-

RATFOR Error Messages
Explanations and Corrections

"15-INCLUDEs nested too deeply."

Meaning: More than 92 user-nested INCLUDE files were
opened concurrently.

Correction: 99 is the maximum number of concurrent FILE-
DEFs allowed by CMS for a FORTRAN file (user-
defined files start with unit number 7).
Check your program for recursion; since this
is not checked for, an infinite INCLUDE loop
may have occurred.

Produced By: GETTOK routine

"16-Specified file does not exist."

Meaning: The file specified in the INCLUDE statement
does not exist.

Correction: Check to make sure the file name, file type
(Default RATFOR), and file mode (Default Al)
were spelled correctly.

Produced By: GETTOK routine

"17-Error in defining file."

Meaning: The CMS FILEDEF statement did not execute cor-
rectly. The specified file was not included.

Correction: Make sure your INCLUDE statement did not
include any CMS unprintable characters within
the file name.

Produced by: GETTOK routine

"18-Token too long."

Meaning: The input token was longer than the maximum
token length (currently 200 characters).

Correction: Shorten the token to something within the
length boundary.

Produced By: GTOK routine

-25-

RATFOR Error Messages
Explanations and Corrections

"19-Missing Quote in string."

Meaning: The string in error was missing its terminat-
ing quote mark.

Correction: Add the required quote mark.
Produced By: GTOK routine

"20-Too many definitions."

Meaning: Too many DEFINE statements were encountered.
Correction: Cut the number of DEFINEs down to the current

maximum (6500 characters in all definitions).
Produced By: INSTAL routine

"21-Warning: Possible label conflict."

Meaning: A user-defined label may conflict with a RAT-
FOR-generated label.

Correction: Generally RATFOR-generated labels are of the
form 23XXX. If a conflict occurs, choose
another user label.

Produced By: LABELC routine

"22-Illegal ELSE."

Meaning: An ELSE was encountered that did not have a
matching IF statement.

Correction: Check to ensure that every ELSE has an associ-
ated IF statement.

Produced By: PARSE routine

"23-Stack overflow in parser."

Meaning: An attempt was made to add too many tokens to
the parser stack.

Correction: Send a copy of your RATFOR file to Dick Orgass
- CMS userid ORGASS, along with an explanation
of the problem encountered.

Produced By: PARSE routine

-26-

-C _ _ _ _ _ _ _ _ _ _ _ _ _

RATFOR Error Messages
Explanations and Corrections

024-Illegal right brace."

Meaning: A right brace was encountered that did not
have a matching left brace.

Correction: Ensure that all left braces have a matching
number of right braces.

Produced By: PARSE routine

"25-Unexpected EOF."

Meaning: The parser was expecting more symbols (possi-
bly loop terminators or brackets) when an end
of file condition occurred.

Correction: Make sure that all loops are in accordance
with the language description and that every
left bracket has a matching right bracket.

Produced By: PARSE routine

"26-Too many characters pushed back."

Meaning: An attempt was made to push more characters on
the input buffer than was allowed.

Correction: Send your RATFOR source to Dick Orgass - CMS
userid ORGASS, along with an explanation of
the problem encountered.

Produced By: PBSTR routine

-27-

Explanation of DEFINES

ALPHA - Internal code designating alphanumeric character type
AND - Internal representation for '&'
ARB - Length of REMARK message buffer
ATSIGN - Internal representation for 1@'
BACKSLASH - Internal representation for \
BACKSPACE - Internal representation for the back space
BANG - Internal representation for '!'
BAR - Internal representation for 'I'
BIGA-BIGZ - Upper case letters A-Z
BLANK - Internal representation for a blank
BUFSIZ - Size of pushback input buffer used by PBSTR
CARET - Internal representation for ','
COLON - Internal representation for ':1
COMMA - Internal representation for ','
DEFTYPE - Internal code following "DEFINE" in definition table
DIGO-DIG9 - Digits 0-9
DIGIT - Internal code for digits
DOLLAR - Internal representation for '$'
DQUOTE - Internal representation for '"'
EOF - Internal code signaling End Of File
EOL - Internal code signifying end of list in definition table
EOS - Internal code signaling end of string in array
EQUALS - Internal representation for '='
ERROUT - Unit number to write error msgs to
GREATER - Internal representation for '>'
LBRACE - Internal representation for '{'
LBRACK - Internal representation for
LESS - Internal representation for <'
LETA-LETZ - Lower case letters A-Z
LEXBREAK - Internal lexical code for BREAK keyword
LEXDIGITS - Internal code for lexical type digits
LEXDO - Internal lexical code for DO keyword
LEXELSE - Internal lexical code for ELSE keyword
LEXFOR - Internal lexical code for FOR keyword
LEXIF - Internal lexical code for IF keyword
LEXNEXT - Internal lexical code for NEXT keyword
LEXOTHER - Internal lexical code for non-RATFOR token
LEXREPEAT - Internal lexical code for REPEAT keyword
LEXUNTIL - Internal lexical code for UNTIL keyword
LEXWHILE - Internal lexical code for WHILE keyword
LPAREN - Internal representation for '('
MAXCARD - Maximum # characters per input record
MAXCHARS - Maximum # characters for OUTNUM
MAXDEF - Maximum # characters in definition
MAXFOR - Maximum stack space for FOR increment clauses

-28-

Explanation of DEFINES
(Continued)

MAXLINE - Maximum # characters per output line
MAXSTACK - Maximum stack depth for parser
MAXTBL - Maximum # characters in all definitions
MAXTOK - Maximum # characters in a token
MINUS - Internal representation for '-'
NCHARS - Number of special characters
NEWLINE - Internal code terminating input line
NO - Negative answer for functions
NOT - Internal representation for '-'
OR - Internal representation for OR bar, same as BAR
PERCENT - Internal representation for '%'
PERIOD - Internal representation for '.'

PLUS - Internal representation for'+'
QMARK - Internal representation for ?
RBRACE - Internal representation for '1'
RBRACK - Internal representation for 'I
RPAREN - Internal representation for ')
SEMICOL - Internal representation for ';
SHARP - Internal representation for '8
SLASH - Internal representation for s/'

SQUOTE - Internal representation for
STAR - Internal representation for '*'
STDOUT - Unit number of output FORTRAN file
TAB - Internal representation for tab character
TILDE - Internal representation for '", same as NOT
UNDERLINE - Internal representation for '

YES - Positive answer for functions
CHARACTER - Used to distinguish character variables from

integers - by appearance only

-29-

"Expanded Program Descriptions"

Program: *** ALLDIG ***

Type: Integer Function

Parameters: STR - String array of 100 characters maximum

Calls: TYPE - Determine string type (alpha, numeric)

Called from: BRKNXT, LEX

Description: ALLDIG returns "YES" if the specified string is
numeric and "NO" otherwise. The code EOS denotes
the end of the string.

Error Messages: None

Program: *** BALPAR *

Type: Subroutine

Parameters: None

Calls: GETTOK - Read next token
OUTSTR - Write token to output file
PBSTR - Place string back in input buffer for

later parsing.
SYNERR - Write error messages

Called from: IFGO

Description: BALPAR determines whether the input string has
balanced parentheses. Basically, 1 is added to
NLPAR for every left parenthesis, while 1 is sub-
tracted for right parentheses. If NLPAR is not
zero at the termination of this routine, an error
message is printed. The search for parentheses
ends when a newline, a left bracket, a semicolon, a
right bracket, or an end of file is encountered.
OUTSTR handles the tokens within parentheses.

Error Messages: "01-Missing Left Paren."
"02-Missing Parenthesis in Condition."

-30-

Program: * BRKNXT *

Type: Subroutine

Parameters: LABVAL - Array stack keeping track of the
labels for loops

LEXTYP - Array stack giving the loop sequence
being parsed

SP - Stack pointer for LEXTYP and LABVAL arrays
TOKEN - Token being parsed

Calls: ALLDIG - Determine whether numbered BREAK
or NEXT

CTOI - Convert level of BREAK or NEXT
from character to numeric

GETTOK - Get next token (nbr in BREAK or NEXT)
OUTGO - Generate GOTO for BREAK or NEXT
PBSTR - Put token back if not number
SYNERR - Flag syntax errors

Called from: PARSE

Description: This routine generates code for the "BREAK N" and
"NEXT N" statements. N may be left off, explaining
the business with ALLDIG and PBSTR - if N isn't
there, we have another token not dealing with
breaks (put it back). For either statement, we
have to determine what sequence we are breaking,
whether a WHILE, DO, FOR, or a REPEAT sequence.
For a NEXT, a GOTO is generated to the specified
iteration of the loop. For a BREAK, we go to the
statement after the loop. To determine where we
are and where to jump to, the LEXTYP and LABVAL
arrays are used; these arrays are simulating
stacks with SP being the stack pointer.

Error Messages: "03-Illegal BREAK."
"04-Illegal NEXT."

-31-

Program: * CONV *

Type: Subroutine

Parameters: EN - Will point to last character converted
OUTSTR - Outgoing string array, 4 characters per

array element
STR - Incoming string array, 1 character per

array element

Calls: Nothing

Called from: ERROR, SYNERR, GETTOK

Limitations: The number 1077952576 represents 4 blanks. This
may not be true in your machine. Also, 64 repre-
sents an EBCDIC blank. 256 is the amount the
string must be multiplied by to shift the whole
string 1 character to the left.

Description: This routine converts d string array stored as 1
character per array location to a left-justified 4
character per location representation. EN points
to the last character converted. This routine is
needed because CMS requires commands to be in the 4
character "packed" form.

Error Messages: None

Program: *** CTOI ***

Type: Integer Function

Parameters: I - Starting subscript to IN array
IN - String array to convert to integer

Calls: INDEX - Return a pointer within the digit string to

the specified digit.

Called from: BRKNXT

Description: Returns the numeric representation of the specified
string. The routine is basically used for user-la-
beled statements because it skips over tab charac-
ters and blanks. The input string ends when the
EOS marker is detected.

Error Messages: None

-32-

Program: * DEFTOK *

Type: Integer Function

Parameters: FD - File that token was read from (varies with
INCLUDES)

TOKEN - Stores token to be processed, 200 charac-
ters maximum

TOKSIZ - Size of token to process

Calls: GETDEF - Get definition from DEFINE statement
GTOK - Get new token
INSTAL - Put definition and name in definition

table
LOOKUP - Look up the token in the definition table

to determine if token = "DEFINE"
PBSTR - Puts DEFN back into the input buffer for

later processing

Called from: GETTOK

Description: This routine processes the RATFOR "DEFINE" state-
ment. If the token is "DEFINE", the associated
name and definition is read from the input buffer
and installed in the big definition table, TABLE.
If the token wasn't "DEFINE", the routine places
the token back into the input buffer. The routine
exits with TOKEN pointing to a new non-DEFINE token
to process.

Error Messages: None

Program: * DOCODE *

Type: Subroutine

Parameters: LAB - Last label generated

Calls: EATUP - Add remainder of DO statement to output
buffer

LABGEN - Generate label for do statement.
OUTDON - Write output buffer to CMS disk file
OUTNUM - Add label to output buffer
OUTSTR - Output the string "DO"
OUTTAB - Output blanks in first 6 columns.

Called from: PARSE

Description: Generate the code for the "DO" statement. This
involves generating a label and inserting it as in
a normal FORTRAN "DO" statement. DOSTAT generates
the "N CONTINUE" to terminate the DO loop. A
label is generated for the statement after the loop
- to branch to should a BREAK or NEXT occur within
the loop.

Error Messages: None

Program: * DOSTAT *

Type: Subroutine

Parameters: LAB - Last label generated

Calls: OUTCON - Write label and CONTINUE to output buffer

Called from: UNSTAK

Description: Generate labeled CONTINUE to terminate DO loop.

Error Messages: None

-34-

Program: * EATUP *

Type: Subroutine

Parameters: None

Calls: GETTOK - Get next token to identify and parse
OUTSTR - Write token to output buffer
PBSTR - Put back string for later parsing
SYNERR - Announce syntax errors to user

Called from: DOCODE, FORCOD, OTHERC

Description: Process remainder of the statement. Check for
balanced parentheses in the rest of the statement.

Error Messages: "05-Unexpected EOF."
"06-Unbalanced Parentheses."

Program: *** ELSEIF *

Type: Subroutine

Parameters: LAB - FORTRAN label for ELSE portion of an IF
statement

Calls: OUTCON - Generate a CONTINUE with a label (LAB) for
the ELSE segment

OUTGO - Generates a GOTO to the next statement
(over the ELSE segment)

Called from: PARSE

Description: Processes part of an IF/ELSE statement. The IF
code has already been generated by IFCODE. This
routine generates the GOTO over the ELSE segment,
then generates a labeled CONTINUE for the ELSE seg-
ment.

Error Messages: None

-35-

Program: * EQUAL *

Type: Integer Function

Parameters: STRI and STR2 - Strings to be compared

Calls: Nothing

Called from: GETTOK, LEX

Description: EQUAL returns "YES" if the specified strings are
equal, "NO" otherwise. End of string (EOS) is
checked in both strings.

Error Messages: None

Program: *** ERROR *

Type: Subroutine

Parameters: MSG - Message specifying the error detected.

Calls: CONV - Convert the 1 charicter/array element to a
4 character per element representation.

EXIT - FORTRAN routine to terminate execution
INTCV - Convert the line number from an integer to

its string representation
REMARK - Write the specified message to an error

file

Called from: GETDEF, FORCOD, PARSE, PUTBAK

Description: Announces to the user that a fatal error has occur-
red. An error message is printed along with the
line number (in the generated code) of the error.
The FORTRAN EXIT subroutine terminates execution of
the RATFOR preprocessor.

Error Messages: None

-36-

Program: * EXIT *

Type: Subroutine

Parameters: None

Calls: Who knows - CMS routine

Called from: ERROR

Description: EXIT transfers control back to the CMS editor. It
is used when a fatal error has been detected while
parsing the RATFOR source.

Error Messages: None

-37-

Program: *** FORCOD ***

Type: Subroutine

Parameters: LAB - Latest label generated

Calls: EATUP - Finish parsing rest of line
ERROR - Inform user that FOR clause is

too long
GETTOK - Get next token in input
LABGEN - Generate labels for FOR statement
LENGTH - Determine length of FOR arguments
OUTCH - Output parentheses
OUTCON - Generate CONTINUE for top of loop
OUTDON - Generate blanks for columns 72-80
OUTGO - Output GOTO statement
OUTSTR - Output IF-NOT string
OUTTAB - Generate blanks for columns 1-6
PBSTR - Put token back in input buffer
SCOPY - Place token on FOR stack
SYNERR - Flag syntax errors

Called From: PARSE

Description: This routine is a complicated procedure to parse
the start of the FOR statement. It must stack the
FOR increment condition for insertion at the end of
the loop. The initial and termination conditions
are parsed and written to the output file. Labels
are generated should a BREAK or NEXT statement
occur in the input. The parentheses checking func-
tion in FORCOD is repetitious with BALPAR.

Error Messages: "07-Missing Left Paren in FOR statement."
"08-Invalid FOR Clause."
"69-FOR clause too long." *
• Fatal error, terminates execution.

-38-

Program: * FORS *

Type: Subroutine

Parameters: LAB - Latest label generated

Calls: LENGTH - Determif4 length of FOR condition
OUTCON - Output CONTINUE for next statement
OUTDON - Place blanks in the rest of the line
OUTGO - Output GOTO for top of FOR loop
OUTNUM - Transfer label to output buffer
OUTSTR - Output the specified string
OUTTAB - Place blanks in columns. 1-6

Called from: PARSE

Description: This routine finishes up the FOR statement which
FORCOD started. This involves writing out the
increment condition which is obtained from the
FORSTK array. The GOTO is written to the top of
the FOR loop and a CONTINUE is written for the
statement after the loop (in case of BREAKS and
NEXTS within the loop). This routine keeps track
of our FOR depth level.

Error Messages: None

-39-

Program: * GETCH *

Type: Integer Function

Parameters: C - Character to be returned
FILE - Input file being read from

Calls: INMAP - Translate the input to internal form

Called from: NGETCH

Description: GETCH reads an input line from the CMS input file
(unit number varies depending on which INCLUDE is
being processing). All of the input line is mapped
to an internal representation. This mapping con-
verts all RATFOR and FORTRAN statements into upper
case. All character constants remain in their ori-
ginal case. Character constants are identified by
their being either within quotation marks or fol-
lowing the Hollerith "H". Since this is a time
consuming process (checking every character to see
whether it is a character constant) the checking is
only done for three cases. Character constants can
only occur 1. within a data statement, 2. within
a FORMAT statement, and 3. within a subroutine
call. These three cases aze recognized by the
presence of a comma, a slash, or a left parenthe-
sis. This is rather crude, but, since the user
wanted a lower case constan*, we must leave it that
way. We have no choice regarding RATFOR and FOR-
TRAN statements - CMS FORTRAN will only handle
upper case programs.

Error Messages: None

-40-

Program: * GETDEF *

Type: Subroutine

Parameters: DEFN - Definition found by GETDEF
DEFSIZ - Size of DEFN
FD - Input file to read from

(unit number varies with INCLUDES)
TOKEN - Token read in by this routine
TOKSIZ - Length of the token

Calls: ERROR - Signal fatal error
GTOK - Read new token from input file
NGETCH - Get next character
PBSTR - Put token back in input buffer
PUTBAK - Put single character back in input buffer

Called from: DEFTOK

Description: GETDEF processes the RATFOR DEFINE statement. DEF-
TOK has retrieved the name - it is up to us to get
the definition. Recall that there are two forms of
DEFINE - with and without parentheses

Error Messages: "10-Non-Alphanumeric Name in DEFINE." *
"ll-Definition too long." *
"12-Missing comma in DEFINE." *
"13-Missing right parenthesis in DEFINE." *
"14-Unexpected token in DEFINE statement." *

• Fatal error, terminates execution

-41-

Program: * GETTOK ***

Type: Integer Function

Parameters: TOKEN - Token being parsed
TOKSIZ - Size of token being parsed

Calls: CONV - Convert token to "packed"
DEFTOK - Get new token, possibly DEFINE
EQUAL - Check if token is FUNCTION or INCLUDE
ERROR - Flag syntax errors, terminates execution
INTCV - Convert file number to numeric

representation
PBSTR - Put token back in input buffer
SYSCAL - VPI routine to execute CMS

commands from executing programs

Called from: BALPAR, BRKXT, EATUP, FORCOD, LEX

Description: This routine processes the RATFOR INCLUDE state-
ment. The INCLUDE allows the inclusion of any
source file during execution. The routine also
saves the names of functions for use later with the
RETURN statement. Up to 92 levels of INCLUDES are
allowed. The file to be included, a CMS file, can
be identified with or without a file type (default
is RATFOR) and with or without a file mode (default
is Al). The GETTOK routine first checks whether
the file exists. If it does, a unit number is
assigned to that file. The CMS FILEDEF statement
is executed informing CMS of our new file number.
Since INCLUDES can be nested, the input routine
(GETCH) reads from the last unit number defined.
When a file is finished (EOF), the file is closed
and the level (representing the unit #) is decre-
mented. Thus, unit numbers are re-used.

Error Messages: "15-INCLUDEs nested too deeply." *
"16-Specified file does not exist." *
"17-Error in defining file." *

• Fatal error, terminates execution

-42-

Program: * GTOK *

Type: Integer Function

Parameters: FD - Input file to read from
(unit # varies with INCLUDEs)

LEXSTR - Returns string to parse
TOKSIZ - Size of token being returned

Calls: NGETCH - Get single character to form token
PUTBAK - Put character back in input buffer
RELATE - Replace RATFOR relational operators

with their FORTRAN equivalents
SYNERR - Flag syntax errors
TYPE - Identify whether alpha or numeric

Called from: DEFTOK, GETDEF

Description: GTOK returns a token to the calling routine. It
strips the input of comments and replaces RATFOR
relational operators with their FORTRAN equiva-
lents. If this is a new line, the line count is
incremented. Braces are substituted for left and
right brackets.

Error Messages: "18-Token too long."
"19-Missing Quote in string."

-43-

Program: * IFCODE *

Type: Subroutine

Parameters: LAB - Last label generated. Will change on exit
from this routine

Calls: IFGO - Parse IF statement
LABGEN - Generate 2 labels (for IF and ELSE)

Called from: PARSE

Description: Generates labels for IF and ELSE (regardless of
whether it needs the ELSE). Calls IFGO to parse
the IF statement.

Error Messages: None

Program: * IFGO ***

Type: Subroutine

Parameters: LAB - FORTRAN label to jump to if the IF condition
is not true.

Calls: BALPAR - Checks on balanced parentheses. Writes text
between parentheses.

OUTCH - Write last ")"
OUTGO - Write "GOTO" with a label
OUTSTR - Writes the string "IF(.NOT."
OUTTAB - write 6 blanks to output buffer

Called from: IFCODE, UNTILS, WHILEC

Description: This routine processes the IF statement. For all
IF statements, the parser generates
"IF(.NOT.(original condition)) GOTO XXX.

Error Messages: None

-44-

Program: *** INDEX *

Type: Integer Function

Parameters: C - Character to locate in string
STR - String array to perform locate operation

upon.

Calls: Nothing

Called from: CTOI

Description: INDEX returns the subscript to the string array
where it found the first occurrence of C. If C was
not found, 0 is returned. EOS marks the end of the
string.

Error Messages: None

Program: *** INITKW *

Type: Subroutine

Parameters: None

Calls: INSTAL - Put "DEFINE" in definition table

Called from: PARSE

Description: This routine sets the available space pointer to
the definition table to 1 and initializes the poin-
ter table, TABPTR, (for definitions) to 0 repre-
senting an empty table. The word "DEFINE" is put
in the definition table along with a flag, DEFTYPE.

Error Messages: None

-45-

Program: * INMAP *

Type: Integer Function

Parameters: CASE - Case to put character in
0 - lower case
1 - upper case

INCHAR - Character to convert

Calls: Nothing

Called from: GETCH

Limitations: Although this routine does the conversions, it is
still fairly machined independent. Any changes to
the internal/external representations must be done
to the COMMON block items.

Description: This routine converts INCHAP from its external
representation to an internal representation. CASE
specifies whether the character is to be left in
lower case or converted to upper case. CASE was
necessary because all FORTRAN and RATFOR statements
are converted to upper case before parsing; all
character constants must stay in their original
case. If a conversion cannot be made, the charac-
ter is left as is.

Error Messages: None

-46-

Program: *** INSTAL ***

Type: Subroutine

Parameters: DEFN - Name the preprocessor will replace NAME with
- also in the DEFINE statement

NAME - Name the RATFOR programmer will use - speci-
fied in a DEFINE statement

Calls: LENGTH - Determine length of NAME string
PUTLIN - Write NAME to error file
ERROR - Write message to error file
SCOPY - Copy NAME and DEFN to definition table

Called from: DEFTOK, INITKW

Limitations: The TABPTR table is 41 long because, although there
are only 26 letters, EBCDIC has some non-alpha
codes between A and Z. This table size may vary
with your machine.

Description: Insert NAME and DEFN into the definition table,
TABLE. The format of this table is described later
in this documentation. Basically, a linked list is
created for each letter in the alphabet pointing to
the first definition starting with that letter.
AVAIL always points to the next available location
in the definition table. EOL signifies the end of
a list.

Error Messages: "20-Too many definitions." *

* Fatal error, terminates execution

-47-

Program: *** INTCV *

Type: Subroutine

Parameters: INT - Integer to convert to string representation
STR - 4 character array to hold string repr.

Calls: MOD function

Called from: ERROR, GETTOK, SYNERR

Description: Converts the specified integer to a 4 character
representation. The representation is stored 1
character per array element. Leading zeroes are
converted to blanks.

Error Messages: None

Program: * LABELC *

Type: Subroutine

Parameters: LEXSTR - Lexical string being analyzed (Hopefully
FORTRAN label)

Calls: LENGTH - Determine string length
OUTSTR - Output the string
OUTTAB - Output blanks in til column 7
SYNERR - Warn user that his label may conflict with

a RATFOR generated label

Called from: PARSE

Description: This routine writes out the RATFOR user's label.
The routine checks (partially) for a label conflict
by determining if the label, of length 5, starts
with 23XXX. If so, we might have a conflict and
the user is warned. Regardless, we write out his
label and let FORTRAN catch the conflict.

Error Messages: '21-Waining: Possible label conflict."

-48-

Program: * LABGEN *

Type: Integer Function

Parameters: N - Integer specifying the number of labels to gen-
erate.

Calls: Nothing

Called from: DOCODE, FORCOD, IFCODE, REPCOD, WHILEC

Description: This program generates a sequence of N labels, the
first of which is returned. A DATA statement pro-
vides that label generation starts with label
23000. The generated labels are used parsing FOR,
REPEAT, UNTIL, DO and IF statements.

Error Messages: None

Program: *** LENGTH *

Type: Integer Function

Parameters: STR - tring array of 100 characters maximum

Calls: Nothing

Called from: FORCOD, FORS, INSTAL, LABELC, PBSTR, RELATE

Description: nis routine determines the length of a string
stored as an array. The program assumes one char-
acter per array entry with the EOS code denoting
the end of the string.

Error Messages: None

-49-

Program: * LEX *

Type: Integer Function

Parameters: LEXSTR - String to identify the lexical type of

Calls: ALLDIG - Determine whether token is numeric
EQUAL - Identify which token this is
GETTOK - Get new token to check type of

Called from: PARSE, UNTILS

Description: LEX returns the lexical type of the token being
parsed. Each RATFOR token (IF, ELSE, WHILE, DO,
BREAK, NEXT, FOR, UNTIL, REPEAT, RETURN) has its
own lexical type. Digits have their type. Uniden-
tifiable types are classed in the general category
type of LEXOTHER.

Error Messages: None

Program: * LOOKUP *

Type: Integer Function

Parameters: DEFN - Holds definition found in table
NAME - Name to locate in definition table

Calls: SCOPY - Copy the retrieved definition from the
definition table to DEFN parameter.

Called from: DEFTOK

Limitations: The table lookup routine appears to be machine
dependent (EBCDIC), but instead only relies on the
condition that each letter has its own character
code.

Description: LOOKUP searches the definition table, TABLE, for
the specified name. If present, the definition is
transferred to DEFN and a "YES" is returned. If
the definition is absent, "NO" is returned from the
function. Refer to the section on table descrip-
tions for an explanation of how the definition
table is organized.

Error Messages: None

-50-

Program: * NGETCH *

Type: Integer Function

Parameters: C - Character to return to calling routine
FD - File to read next character from

Calls: GETCH - Get next character

Called from: GTOK, RELATE

Description: Return a new character to the calling routine.
First, check the input buffer where PBSTR has been
storing things pushed back. If empty, call GETCH
to read from the input file.

Error Messages: None

Program: * OTHERC *

Type: Subroutine

Parameters: LEXSTR - String array to put in output buffer

Calls: EATUP - Transfer rest of this line
OUTDON - Place blanks in remaining columns
OUTSTR - Transfer string to buffer
OUTTAB - Write blanks through column 6

Called from: PARSE

Description: OTHERC processes FORTRAN statements. Because RAT-
FOR has free-format input, this routine ensures the
proper FORTRAN spacing.

Error Messages: None

-51-

Program: *** OUTCH *

Type: Subroutine

Parameters: C - Character to insert in output buffer

Calls: OUTDON - Fill columns 72-80 with blanks

Called from: FORCOD, IFGO, OUTNUM, OUTSTR, OUTTAB

Description: Add the character, C, to the output buffer. Place
blanks in columns 72-80. If we are processing a
continuation line, place a star in the next line's
column 6.

Error Messages: None

Program: *** OUTCON *

Type: Subroutine

Parameters: N - Label for "N CONTINUE"

Calls: OUTDON - Write remaining columns of 'line
OUTNUM - Write N, the label
OUTSTR - Write "CONTINUE"
OUTTAB - Write blanks til column 7

Called from: DOSTAT, ELSEIF, FORCOD, FORS, REPCOD, UNSTAK,
UNTILS, WHILEC, WHILES

Description: OUTCON transfers the sequence "N CONTINUE" to the
output buffer where N is a label. No sequence is
generated for unlabeled continues.

Error Messages: None

-52-

Program: *** OUTDON *

Type: Subroutine

Parameters: None

Calls: PUTLIN - Write entire output line

Called from: DOCODE, FORCOD, FORS, OTHERC, OUTCH, OUTCON, OUTGO

Description: Add end of line (NEWLINE) and end of string (EOS)
to output buffer. Write the entire output line to
the CMS disk file (via PUTCH).

Error Messages: None

Program: *** OUTGO ***

Type: Subroutine

Parameters: N - Label for "GOTO N"

Calls: OUTDON - Output blanks til end of line
OUTNUM - Outputs label for GOTO
OUTSTR - Output string "GOTO"
OUTTAB - Output blanks in columns 1-6

Called from: BRKNXT, ELSEIF, FORCOD, FORS, IFGO, UNTILS, WHILES

Description: OUTGO transfers the string "GOTO N" to the output
buffer. This sequence is used for statements like
FOR, REPEAT, etc.

Error Messages: None

-53-

Program: *** OUTMAP ***

Type: Integer Function

Parameters: INCHAR - Character to convert

Calls: Nothing

Called from: PUTCH

Limitations: Although this routine does the conversion to a
printable representation, it is fairly machine
independent. Any changes to the representations
must be done to the COMMON block items.

Description: This routine converts the INCHAR from its internal
representation (mixed ASCII and EBCDIC) to a repre-
sentation printable on your machine. If no conver-
sion can be made, the character is left as is.

Error Messages: None

Program: *** OUTNUM *

Type: Subroutine

Parameters: N - Number to convert to character representation

Calls: MOD - Used in conversion process
OUTCH - Transfer converted number to output buffer

Called from: DOCODE, FORS, OUTCON, OUTGO, OUTSTR, UNTILS, WHILEC

Description: OUTNUM converts a number (generally labels) , N,
into its character representation. The label is
then sent on to the output buffer via the OUTCH
subroutine. This routine is the reverse of CTOI,
and extremely similar to INTCV (INTCV goes to 4
characters per array element).

Error Messages: None

-54-

Program: * OUTSTR ***

Type: Subroutine

Parameters: STR - String to place in output buffer

Calls: OUTCH - Place single character in output buffer
OUTNUM - Place number in output buffer

converting from character to numeric

Called from: BALPAR, DOCODE, EATUP, FORCOD, FORS, IFGO, LABELC,
OTHERC, OUTCON, OUTGO

Description: This routine transfers a string to the output buf-
fer. If the string is in single or double quotes,
the string is converted to the Hollerith format
(eg. 'a' = lHa). The transfer to the output buffer
continues until the EOS marker is encountered.

Error Messages: None

Program: * OUTTAB *

Type: Subroutine

Calls: OUTCH - Write out a blank

Called from: DOCODE, FORCOD, FORS, IFGO, LABELC, OTHERC, OUTcON,
OUTGO

Description: OUTTAB writes blanks through column 6 (FORTRAN
statements start in column 7).

Error Messages: None

-55-

Program: *** PARSE ***

Type: Subroutine

Parameters: None

Calls: BRKNXT - Parse BREAK and NEXT statements
DOCODE - Parse DO statement
ELSEIF - If present, parse ELSE statement
ERROR - Flag fatal errors, terminate execution
FORCOD - Parse FOR statement
IFCODE - Parse IF statement
INITKW - Initialize the definition table.
LABELC - Output user-defined label
LEX - Lexically analyze input and return parsea-

ble token
OTHERC - Process ordinary FORTRAN statements
PBSTR - Put string back in input save buffer
REPCOD - Parse REPEAT statement
RETCOD - Parse RETURN statement
SYNERR - Flag syntax errors
UNSTAK - Finish processing all loops
WHILEC - Parse WHILE statement

Called from: RATFOR main procedure

Description: PARSE is the RATFOR parser delegating parsing res-
ponsibilities to the above-specified subroutines.
Most error messages are printed by the subroutines.
Bracketed statements are handled here.

Error Messages: "22-Illegal ELSE."
"23-Stack overflow in parser."
"24-Illegal right brace."
"25-Unexpected EOF." *

• Fatal error, terminates execution

-56-

Program: * PBSTR *

Type: Subroutine

Parameters: IN - String array to push back in the input buffer
100 characters maximum.

Calls: LENGTH - Determine actual length of IN. EOS marks
the end of the string.

PUTBAK - Puts single character back in the input
buffer

Called from: BALPAR, BRKNXT, DEFTOK, EATUP, FORCOD, GETDEF, GET-
TOK

PARSE

Description: Adds the string IN to the input buffer.

Error Messages: "26-Too many characters pushed back."

Program: *** PUTBAK *

Type: Subroutine

Parameters: C - Character to put back in input buffer

Calls: ERROR - Writes message to error file when trying to
put back too many characters

Called from: GETTOK, GTOK, PBSTR, RELATE

Description: Puts character, C, into an input buffer for later
parsing. An error message is printed if too many
characters are pushed back.

Error Messages: None

-57-

Program: * PUTCH *

Type: Subroutine

Parameters: C - Character to write to output file
F - File to write to

Calls: OUTMAP - Map the character to printable external

representation

Called from: PUTLIN

Description: Place character, C, in the output buffer. When the
maximum number per output line has been reached, or
at the end of a RATFOR line (C=NEWLINE), write the
entire output buffer. Every naracter is mapped to
a printable representation by OUTMAP.

Error Messages: None

Program: *** PUTLIN ***

Type: Subroutine

Parameters: B - String array to write
FILE - Output file to write to

Calls: PUTCH - Write individual string characters

Called from: INSTAL, OUTDON

Description: Write the string array to the output buffer (PUTCH
sends it on to the output file) . EOS denotes the
end of the string array.

Error Messages: None

-58-

Program: * RELATE *

Type: Subroutine

Parameters: FD - Input file to read from
LAST - Length of new token
TOKEN - Token to parse

Calls: LENGTH - Determine length of new token
NGETCH - Read new token from input file FD
PUTBAK - Place token item back into input buffer
SCOPY - Copy new FORTRAN version of relation oper-

ator into TOKEN array

Called from: GTOK

Description: This routine replaces the RATFOR relational opera-
tors (see language description) with their FORTRAN
equivalent. For example, == is replaced by .EQ.
The EOS marker is placed at the end of the new
relational operator and the new length is returned.
Recall that some tokens require two symbols (">-)
while others require just one ("<").

Error Messages: None

Program: *** REMARK *

Type: Subroutine

Parameters: BUF - Buffer holding message to write to user error
file

Calls: Nothing

Called from: ERROR, INSTAL

Limitations: This routine is machine dependent, writing to unit
6 as an error file.

Description: REMARK writes the specified message to a CMS error
file.

Error Messages: None

-59-

Program: *** REPCOD ***

Type: Subroutine

Parameters: LAB - Last label generated

Calls: LABGEN - Generate labels for REPEAT code
OUTCON - Write labeled "CONTINUEN

Called from: PARSE

Description: This routine begins code generation for the RATFOR
REPEAT statement. Recall that most of the work is
done at the UNTIL end of the parsing. Labels are
generated for later use.

Error Messages: None

Program: * RETCOD *

Type: Subroutine

Parameters: None

Calls: EATUP - Finish this line
GETTOK - Get next token (after RETURN)
OUTCH - Output an equal sign
OUTDON - Place blanks in columns 72-80
OUTSTR - Output the function name
OUTTAB - Place blanks in columns 1-6
PBSTR - Place string back in input buffer

Called from: PARSE, SYNERR

Description: Recall that the RETURN statement may be of the form
RETURN (YES). Th:.s routine retrieves the function
name (from FCNAMF) and writes a statement setting
it equal to the return value (YES in the example
above). The normal RETURN statement (without a
value) is also parsed. The routine worrys about
brackets and if it finds a right bracket in the
input, it keeps it there for later parsing.

Error Messages: None

-60-

Program: * SCOPY *

Type: Subroutine

Parameters: FROM - Array to copy from
I - Start subscript of FROM
J - Starting subscript of TO
TO - Array to copy to

Calls: Nothing

Called from: FORCOD, INSTAL, LOOKUP, RELATE

Description: Copies the array FROM, starting at I, to the array
TO, starting at J. The copy operation continues
until an End of String (EOS) is encountered. An
EOS marker is then put at the end of TO.

Error Messages: None

Program: *** SYNERR *

Type: Subroutine

Parameters: MSG - Message specifying the error detected

Calls: CONV - Convert the 1 character per array element
string to a 4 character per element repre-
sentation.

INTCV - Convert the line number from an integer to
its string representation.

REMARK - Write the specified message to an error
file

Called from: BALPAR, BRKNXT, EATUP, FORCOD, GETTOK, GTOK,
LABELC, PARSE

Description: Announces to the user that an error has occurred.
An error message is printed along with the line
number (in the RATFOR codc) of the error.

Error Messages: None

-61-

Program: * SYSCAL *

Type: Subroutine

Parameters: Field 1 - Array holding CMS command to be executed.
Must have 4 characters / array element

Field 2 - Length of Field 1 parameter
Field 3 - Location to store CMS return code

Calls: Who knows - CMS routine

Called from: GETTOK

Description: SYSCAL is a VPI subroutine that executes CMS com-
mands from within a running program. In this
application, it is used to inform CMS of our
INCLUDE file. The routine returns an error code
reflecting whether the command executed success-
fully. Please see the CMS User's Guide for a des-
cription of the error codes.

Error Messages: None

Program: *** TYPE *

Type: Integer Function

Parameters: C - Character to determine type of

Calls: Nothing

Called from: ALLDIG, GTOK

Description: Signals if the specified character is numeric or
alphabetic. If neither case is true, the character
is returned.

Error Messages: None

-62-

Program: *** UNSTAK ***

Type : Subroutine

Parameters: LABVAL - Array stack keeping track of the labels
for our loops

LEXTYP - Array stack giving the loop sequence we
are now processing.

SP - Stack pointer for LABVAL and LEXTYP arrays
TOKEN - Token being parsed

Calls: DOSTAT - Generate labeled "CONTINUE" for DO state-
ment

FORS - Process bottom of FOR loop
OUTCON - Generate labeled "CONTINUE" statement for

IF and ELSE statements
UNTILS - Process bottom of REPEAT/UNTIL loop
WHILES - Process bottom of WHILE loop

Called from: PARSE

Description: This routine finishes processing for all loops and
bracketed statements (IF, ELSE, DO, WHILE,
REPEAT/UNTIL, FOR). To do the processing, it calls
the appropriate subroutine for the loop we are in.
The LABVAL and LEXTYP arrays identify which loop
sequence we are in and which labels needs to be
generated.

Error Messages: None

-63-

Program: * UNTILS *

Type: Subroutine

Parameters: LAB - Last label generated
TOKEN - Token just encountered

Calls: IFGO - Generate code for UNTIL condition
LEX - Parse UNTIL condition
OUTCON - Output "CONTINUE" for after REPEAT
OUTGO - Output "GOTO" for REPEAT without

UNTIL statement
OUTNUM - Write label for bottom of

REPEAT block

Called from: PARSE, UNSTAK

Description: This routine parses the two kinds of REPEAT state-
ments in RATFOR. The first has the keyword UNTIL
at the end of the loop. For this case, code is
generated for the UNTIL condition, in the form of
an IF-NOT jump statement. The other kind of REPEAT
has no UNTIL. Theoretically this is an endless
loop so only a GOTO statement is generated to the
top of the loop. Both cases described above have a
post-loop CONTINUE generated.

Error Messages: None

Program: *** WHILEC *

Type: Subroutine

Parameters: LAB - Latest label generated

Calls: IFGO - Generates IF..NOT for WHILE condition
LABGEN - Generate label for WHILE condition and

loop termination condition
OUTCON - Generate labeled CONTINUE
OUTNUM - Output character version of label

Called from: PARSE

Description: Parses RATFOR WHILE statement, generating labels
for both the WHILE condition and the loop termina-
tion condition. The WHILES routine processes the
bottom of the loop.

Error Messages: None

-64-

Program: *** WHILES *

Type: Subroutine

Parameters: LAB - Label for GOTO statement

Calls: OUTCON - Output "CONTINUE" with new label
OVTGO - Output "GOTO" with specified label

Called from: ,. 3TAK

Description: Processes the bottom of a WHILE loop, generating a
"GOTO" to the top of the loop and a "CONTIL;UE" for
after the loop.

Error Messages: None

-65-

